როგორ დავიმახსოვროთ წერტილები ერთეულ წრეზე. ტრიგონომეტრიული წრე

მარტივად რომ ვთქვათ, ეს არის წყალში მოხარშული ბოსტნეული სპეციალური რეცეპტის მიხედვით. განვიხილავ ორ საწყის კომპონენტს (ბოსტნეულის სალათას და წყალს) და მზა შედეგს - ბორშს. გეომეტრიულად, ის შეიძლება მივიჩნიოთ როგორც მართკუთხედი, რომლის ერთი მხარე წარმოადგენს სალათის ფოთლებს, ხოლო მეორე მხარე წყალს. ამ ორი მხარის ჯამი მიუთითებს ბორშზე. ასეთი "ბორშის" მართკუთხედის დიაგონალი და ფართობი არის წმინდა მათემატიკური ცნებები და არასოდეს გამოიყენება ბორშის რეცეპტებში.


როგორ გადაიქცევა სალათის ფოთოლი და წყალი ბორშჩად მათემატიკური თვალსაზრისით? როგორ შეიძლება ორი წრფის სეგმენტის ჯამი გახდეს ტრიგონომეტრია? ამის გასაგებად ჩვენ გვჭირდება წრფივი კუთხოვანი ფუნქციები.


მათემატიკის სახელმძღვანელოებში წრფივი კუთხოვანი ფუნქციების შესახებ ვერაფერს იპოვით. მაგრამ მათ გარეშე არ შეიძლება მათემატიკა. მათემატიკის კანონები, ისევე როგორც ბუნების კანონები, მუშაობს იმისდა მიუხედავად, ვიცით თუ არა მათი არსებობის შესახებ.

წრფივი კუთხოვანი ფუნქციები შეკრების კანონებია.ნახეთ, როგორ იქცევა ალგებრა გეომეტრიად და გეომეტრია ტრიგონომეტრიად.

შესაძლებელია თუ არა ხაზოვანი კუთხოვანი ფუნქციების გარეშე? ეს შესაძლებელია, რადგან მათემატიკოსები მაინც ახერხებენ მათ გარეშე. მათემატიკოსთა ხრიკი იმაში მდგომარეობს, რომ ისინი ყოველთვის გვეუბნებიან მხოლოდ იმ ამოცანების შესახებ, რომელთა გადაჭრაც თავად იციან, და არასოდეს გვეუბნებიან იმ ამოცანების შესახებ, რომელთა გადაჭრაც მათ არ შეუძლიათ. შეხედე. თუ ვიცით შეკრების შედეგი და ერთი წევრი, გამოკლებას ვიყენებთ მეორე წევრის საპოვნელად. ყველა. ჩვენ არ ვიცით სხვა პრობლემები და არ ვიცით როგორ მოვაგვაროთ ისინი. რა უნდა გავაკეთოთ, თუ მხოლოდ მიმატების შედეგი ვიცით და ორივე ტერმინი არ ვიცით? ამ შემთხვევაში, დამატების შედეგი უნდა დაიშალოს ორ ტერმინად წრფივი კუთხოვანი ფუნქციების გამოყენებით. შემდეგი, ჩვენ თვითონ ვირჩევთ რა შეიძლება იყოს ერთი ტერმინი და წრფივი კუთხოვანი ფუნქციები გვიჩვენებს, თუ როგორი უნდა იყოს მეორე წევრი ისე, რომ დამატების შედეგი იყოს ზუსტად ის, რაც ჩვენ გვჭირდება. ასეთი წყვილი ტერმინების უსასრულო რაოდენობა შეიძლება იყოს. ყოველდღიურ ცხოვრებაში ჩვენ კარგად ვხვდებით ჯამის დაშლის გარეშე, ჩვენთვის საკმარისია. მაგრამ ბუნების კანონების მეცნიერულ კვლევაში, ჯამის კომპონენტებად დაშლა შეიძლება ძალიან სასარგებლო იყოს.

დამატების კიდევ ერთი კანონი, რომელზეც მათემატიკოსებს არ უყვართ ლაპარაკი (კიდევ ერთი მათი ხრიკი) მოითხოვს, რომ ტერმინებს ჰქონდეთ იგივე საზომი ერთეულები. სალათისთვის, წყლისა და ბორშისთვის ეს შეიძლება იყოს წონის, მოცულობის, ღირებულების ან საზომი ერთეული.

ფიგურაში ნაჩვენებია მათემატიკური განსხვავების ორი დონე. პირველი დონე არის განსხვავებები რიცხვების ველში, რომლებიც მითითებულია , , . ამას აკეთებენ მათემატიკოსები. მეორე დონე არის განსხვავებები საზომი ერთეულების ველში, რომლებიც ნაჩვენებია კვადრატულ ფრჩხილებში და მითითებულია ასოებით. . ამას აკეთებენ ფიზიკოსები. ჩვენ შეგვიძლია გავიგოთ მესამე დონე - განსხვავებები აღწერილი ობიექტების არეალში. სხვადასხვა ობიექტს შეიძლება ჰქონდეს იგივე რაოდენობის საზომი ერთეული. რამდენად მნიშვნელოვანია ეს, ჩვენ ვხედავთ ბორშის ტრიგონომეტრიის მაგალითს. თუ ჩვენ დავამატებთ ხელმოწერებს ერთი და იგივე ერთეულის აღნიშვნას სხვადასხვა ობიექტისთვის, შეგვიძლია ზუსტად ვთქვათ, რა მათემატიკური სიდიდე აღწერს კონკრეტულ ობიექტს და როგორ იცვლება ის დროთა განმავლობაში ან ჩვენი მოქმედებების გამო. წერილი წყალს დავნიშნავ ასოთი სალათს დავნიშნავ ასოთი - ბორში. ასე გამოიყურება ბორშჩის წრფივი კუთხოვანი ფუნქციები.

თუ ავიღებთ წყლის ნაწილს და სალათის ნაწილს, ისინი ერთად გადაიქცევიან ბორშჩის ერთ პორციაში. აქვე გირჩევთ, ცოტათი დაისვენოთ ბორშჩისგან და გაიხსენოთ თქვენი შორეული ბავშვობა. გახსოვთ, როგორ გვასწავლეს კურდღლებისა და იხვების შეკრება? საჭირო იყო იმის დადგენა, რამდენი ცხოველი იქნებოდა. რა გვასწავლეს მაშინ? გვასწავლეს საზომი ერთეულების გამოყოფა რიცხვებისგან და რიცხვების შეკრება. დიახ, ნებისმიერი ნომერი შეიძლება დაემატოს ნებისმიერ სხვა ნომერს. ეს არის პირდაპირი გზა თანამედროვე მათემატიკის აუტიზმისკენ - ჩვენ ამას ვაკეთებთ გაუგებრად, რა, გაუგებრად რატომ და ძალიან ცუდად გვესმის, როგორ უკავშირდება ეს რეალობას, სამი დონის განსხვავების გამო, მათემატიკოსები მუშაობენ მხოლოდ ერთით. უფრო სწორი იქნება ვისწავლოთ როგორ გადავიდეთ ერთი საზომი ერთეულიდან მეორეზე.

კურდღლების, იხვების და პატარა ცხოველების დათვლა შესაძლებელია ნაწილებად. სხვადასხვა ობიექტების საზომი ერთი საერთო ერთეული საშუალებას გვაძლევს დავამატოთ ისინი. ეს არის პრობლემის საბავშვო ვერსია. მოდით შევხედოთ მსგავს პრობლემას მოზრდილებში. რას იღებთ, როცა კურდღლებს და ფულს დაამატებთ? აქ ჩვენ შეგვიძლია შემოგთავაზოთ ორი გამოსავალი.

პირველი ვარიანტი. ჩვენ განვსაზღვრავთ კურდღლების საბაზრო ღირებულებას და ვამატებთ მას ხელმისაწვდომ თანხას. ჩვენ მივიღეთ ჩვენი სიმდიდრის მთლიანი ღირებულება ფულადი თვალსაზრისით.

მეორე ვარიანტი. თქვენ შეგიძლიათ დაამატოთ კურდღლების რაოდენობა ჩვენს ბანკნოტების რაოდენობას. მოძრავ ქონებას ნაწილებად მივიღებთ.

როგორც ხედავთ, იგივე დამატების კანონი საშუალებას გაძლევთ მიიღოთ განსხვავებული შედეგები. ეს ყველაფერი დამოკიდებულია იმაზე, თუ რა გვინდა ვიცოდეთ.

მაგრამ დავუბრუნდეთ ჩვენს ბორშს. ახლა ჩვენ ვხედავთ, რა მოხდება ხაზოვანი კუთხოვანი ფუნქციების სხვადასხვა კუთხის მნიშვნელობებისთვის.

კუთხე არის ნული. სალათი გვაქვს, წყალი კი არა. ბორშს ვერ ვამზადებთ. ბორშის რაოდენობაც ნულის ტოლია. ეს საერთოდ არ ნიშნავს იმას, რომ ნულოვანი ბორში ნულ წყალს უდრის. შეიძლება იყოს ნულოვანი ბორში ნულოვანი სალათით (მართი კუთხით).


პირადად ჩემთვის ეს არის მთავარი მათემატიკური დასტური იმისა, რომ . ნული არ ცვლის რიცხვს დამატებისას. ეს იმიტომ ხდება, რომ დამატება თავისთავად შეუძლებელია, თუ არის მხოლოდ ერთი ტერმინი და აკლია მეორე წევრი. თქვენ შეგიძლიათ იგრძნოთ ამის შესახებ, როგორც გსურთ, მაგრამ გახსოვდეთ - ყველა მათემატიკური ოპერაცია ნულთან ერთად გამოიგონეს თავად მათემატიკოსებმა, ასე რომ, გადააგდეთ თქვენი ლოგიკა და სულელურად დაასხით მათემატიკოსების მიერ გამოგონილი განმარტებები: "ნულზე გაყოფა შეუძლებელია", "ნებისმიერი რიცხვი გამრავლებული. ნული უდრის ნულს", "ნულ წერტილს მიღმა" და სხვა სისულელეები. საკმარისია ერთხელ გვახსოვდეს, რომ ნული რიცხვი არ არის და აღარასოდეს გაგიჩნდება კითხვა, ნული ნატურალური რიცხვია თუ არა, რადგან ასეთი კითხვა ყოველგვარ მნიშვნელობას კარგავს: როგორ შეიძლება რიცხვად ჩაითვალოს ის, რაც არ არის რიცხვი. ? ეს ჰგავს კითხვას, თუ რა ფერის უნდა იყოს კლასიფიცირებული უხილავი ფერი. რიცხვისთვის ნულის მიმატება იგივეა, რაც საღებავით ხატვა, რომელიც არ არის. მშრალი ფუნჯი ვატრიალეთ და ყველას ვუთხარით, რომ „ჩვენ ვხატავთ“. მაგრამ ცოტას ვშორდები.

კუთხე არის ნულზე მეტი, მაგრამ ორმოცდახუთი გრადუსზე ნაკლები. სალათის ფოთოლი ბევრი გვაქვს, მაგრამ წყალი არ არის საკმარისი. შედეგად მივიღებთ სქელ ბორშს.

კუთხე ორმოცდახუთი გრადუსია. თანაბარი რაოდენობით გვაქვს წყალი და სალათი. ეს არის სრულყოფილი ბორში (მაპატიეთ, მზარეულებო, ეს მხოლოდ მათემატიკაა).

კუთხე ორმოცდახუთ გრადუსზე მეტია, მაგრამ ოთხმოცდაათ გრადუსზე ნაკლები. ბევრი წყალი გვაქვს და ცოტა სალათი. მიიღებთ თხევად ბორშს.

მართი კუთხე. წყალი გვაქვს. სალათიდან რჩება მხოლოდ მოგონებები, რადგან ჩვენ ვაგრძელებთ კუთხის გაზომვას იმ ხაზიდან, რომელიც ოდესღაც სალათს აღნიშნავდა. ბორშს ვერ ვამზადებთ. ბორშის რაოდენობა ნულის ტოლია. ამ შემთხვევაში მოითმინეთ და დალიეთ წყალი სანამ გაქვთ)))

აქ. რაღაც ისეთი. აქ სხვა ისტორიების მოყოლა შემიძლია, რაც აქ უფრო მიზანშეწონილი იქნება.

ორ მეგობარს ჰქონდა წილი საერთო ბიზნესში. ერთი მათგანის მოკვლის შემდეგ ყველაფერი მეორეზე გადავიდა.

მათემატიკის გაჩენა ჩვენს პლანეტაზე.

ყველა ეს ამბავი მოთხრობილია მათემატიკის ენაზე წრფივი კუთხოვანი ფუნქციების გამოყენებით. სხვა დროს მე გაჩვენებთ ამ ფუნქციების რეალურ ადგილს მათემატიკის სტრუქტურაში. ამასობაში დავუბრუნდეთ ბორშის ტრიგონომეტრიას და განვიხილოთ პროგნოზები.

შაბათი, 26 ოქტომბერი, 2019 წ

ოთხშაბათი, 7 აგვისტო, 2019 წ

საუბრის დასასრულს, ჩვენ უნდა განვიხილოთ უსასრულო ნაკრები. საქმე იმაშია, რომ „უსასრულობის“ ცნება მათემატიკოსებზე ისე მოქმედებს, როგორც ბოა კონსტრიქტორი კურდღელზე. უსასრულობის აკანკალებული საშინელება მათემატიკოსებს ართმევს საღ აზრს. აი მაგალითი:

ორიგინალური წყარო მდებარეობს. ალფა ნიშნავს რეალურ რიცხვს. ზემოთ მოცემულ გამონათქვამებში ტოლობის ნიშანი მიუთითებს იმაზე, რომ თუ უსასრულობას დაუმატებთ რიცხვს ან უსასრულობას, არაფერი შეიცვლება, შედეგი იქნება იგივე უსასრულობა. თუ მაგალითისთვის ავიღებთ ნატურალური რიცხვების უსასრულო სიმრავლეს, მაშინ განხილული მაგალითები შეიძლება წარმოდგენილი იყოს შემდეგი სახით:

ნათლად დასამტკიცებლად, რომ ისინი მართალი იყვნენ, მათემატიკოსებმა მრავალი განსხვავებული მეთოდი მოიგონეს. პირადად მე, ყველა ამ მეთოდს ვუყურებ, როგორც ტამბურებთან მოცეკვავე შამანებს. არსებითად, ყველა მათგანი ემყარება იმ ფაქტს, რომ ან ზოგიერთი ოთახი დაუსახლებელია და ახალი სტუმრები შემოდიან, ან რომ ზოგიერთი სტუმარი დერეფანში გააგდებს სტუმრებისთვის ადგილს (ძალიან ადამიანურად). მე წარმოვადგინე ჩემი შეხედულება ასეთ გადაწყვეტილებებზე ფანტასტიკური ისტორიის სახით ქერაზე. რას ეფუძნება ჩემი მსჯელობა? უსასრულო რაოდენობის ვიზიტორთა გადატანას უსასრულო დრო სჭირდება. მას შემდეგ რაც ჩვენ გავათავისუფლებთ პირველ ოთახს სტუმრისთვის, ერთ-ერთი სტუმარი ყოველთვის გადის დერეფნის გასწვრივ მისი ოთახიდან მეორე ოთახში დროის ბოლომდე. რა თქმა უნდა, დროის ფაქტორი შეიძლება სულელურად იგნორირებული იყოს, მაგრამ ეს იქნება კატეგორიაში "არავითარი კანონი არ არის დაწერილი სულელებისთვის". ეს ყველაფერი დამოკიდებულია იმაზე, თუ რას ვაკეთებთ: რეალობის მორგება მათემატიკურ თეორიებზე ან პირიქით.

რა არის "უსასრულო სასტუმრო"? უსასრულო სასტუმრო არის სასტუმრო, რომელსაც ყოველთვის აქვს ნებისმიერი რაოდენობის ცარიელი საწოლი, მიუხედავად იმისა, თუ რამდენი ნომერია დაკავებული. თუ გაუთავებელი „ვიზიტორის“ დერეფნის ყველა ოთახი დაკავებულია, არის კიდევ ერთი გაუთავებელი დერეფანი „სასტუმრო“ ოთახებით. ასეთი დერეფნების უსასრულო რაოდენობა იქნება. უფრო მეტიც, "უსასრულო სასტუმროს" აქვს უსასრულო რაოდენობის სართულები უსასრულო რაოდენობის შენობებში უსასრულო რაოდენობის პლანეტებზე უსასრულო რაოდენობის სამყაროებში, რომლებიც შექმნილია ღმერთების უსასრულო რაოდენობით. მათემატიკოსები ვერ ახერხებენ დისტანცირებას ბანალური ყოველდღიური პრობლემებისგან: ყოველთვის არის მხოლოდ ერთი ღმერთი-ალაჰ-ბუდა, არის მხოლოდ ერთი სასტუმრო, არის მხოლოდ ერთი დერეფანი. ასე რომ, მათემატიკოსები ცდილობენ სასტუმროს ნომრების სერიული ნომრების ჟონგლირებას და დაგვარწმუნონ, რომ შესაძლებელია „შეიძულოს შეუძლებელში“.

მე გაჩვენებთ ჩემი მსჯელობის ლოგიკას ნატურალური რიცხვების უსასრულო სიმრავლის მაგალითის გამოყენებით. ჯერ თქვენ უნდა უპასუხოთ ძალიან მარტივ კითხვას: ნატურალური რიცხვების რამდენი სიმრავლეა - ერთი ან ბევრი? ამ კითხვაზე სწორი პასუხი არ არსებობს, რადგან ჩვენ თვითონ გამოვიგონეთ რიცხვები ბუნებაში. დიახ, ბუნება შესანიშნავია დათვლაში, მაგრამ ამისათვის ის იყენებს სხვა მათემატიკურ ინსტრუმენტებს, რომლებიც ჩვენთვის არ არის ნაცნობი. მე გეტყვით რას ფიქრობს ბუნება სხვა დროს. ვინაიდან ჩვენ გამოვიგონეთ რიცხვები, ჩვენ თვითონ გადავწყვეტთ ნატურალური რიცხვების რამდენი კომპლექტი არსებობს. განვიხილოთ ორივე ვარიანტი, როგორც ეს შეეფერება ნამდვილ მეცნიერებს.

ვარიანტი ერთი. „მოდით მოგვცეს“ ნატურალური რიცხვების ერთი ნაკრები, რომელიც მშვიდად დევს თაროზე. ამ კომპლექტს თაროდან ვიღებთ. ესე იგი, თაროზე სხვა ნატურალური რიცხვები აღარ დარჩა და არსად წასაყვანი. ჩვენ ვერ დავამატებთ ერთს ამ კომპლექტში, რადგან ის უკვე გვაქვს. რა მოხდება, თუ მართლა გინდა? პრობლემა არ არის. ჩვენ შეგვიძლია ავიღოთ უკვე აღებული ნაკრებიდან და დავაბრუნოთ თაროზე. ამის შემდეგ შეგვიძლია თაროდან ავიღოთ ერთი და დავამატოთ რაც დაგვრჩა. შედეგად, ჩვენ კვლავ მივიღებთ ნატურალური რიცხვების უსასრულო სიმრავლეს. თქვენ შეგიძლიათ ჩამოწეროთ ყველა ჩვენი მანიპულაცია ასე:

ჩავწერე მოქმედებები ალგებრული აღნიშვნით და სიმრავლეების თეორიის აღნიშვნით, სიმრავლის ელემენტების დეტალური ჩამონათვალით. სუბსკრიპტი მიუთითებს, რომ ჩვენ გვაქვს ნატურალური რიცხვების ერთი და ერთადერთი ნაკრები. გამოდის, რომ ნატურალური რიცხვების სიმრავლე უცვლელი დარჩება მხოლოდ იმ შემთხვევაში, თუ მას ერთი გამოაკლდება და იგივე ერთეული დაემატება.

ვარიანტი ორი. ჩვენს თაროზე ნატურალური რიცხვების მრავალი განსხვავებული უსასრულო ნაკრები გვაქვს. ხაზს ვუსვამ - განსხვავებულს, მიუხედავად იმისა, რომ ისინი პრაქტიკულად არ განსხვავდებიან. ავიღოთ ერთ-ერთი ასეთი ნაკრები. შემდეგ ვიღებთ ერთს ნატურალური რიცხვების მეორე სიმრავლიდან და ვამატებთ უკვე აღებულ სიმრავლეს. შეგვიძლია ნატურალური რიცხვების ორი კომპლექტიც კი დავამატოთ. ეს არის ის, რაც ჩვენ ვიღებთ:

ხელმოწერები "ერთი" და "ორი" მიუთითებს, რომ ეს ელემენტები განსხვავებულ კომპლექტს ეკუთვნოდა. დიახ, თუ ერთს დაუმატებთ უსასრულო კომპლექტს, შედეგი ასევე იქნება უსასრულო ნაკრები, მაგრამ ის არ იქნება იგივე, რაც ორიგინალური ნაკრები. თუ დაუმატებთ კიდევ ერთ უსასრულო სიმრავლეს ერთ უსასრულო სიმრავლეს, შედეგი იქნება ახალი უსასრულო სიმრავლე, რომელიც შედგება პირველი ორი სიმრავლის ელემენტებისაგან.

ნატურალური რიცხვების სიმრავლე გამოიყენება დასათვლელად ისევე, როგორც საზომი. ახლა წარმოიდგინეთ, რომ სახაზავს ერთი სანტიმეტრი დაუმატეთ. ეს იქნება განსხვავებული ხაზი, რომელიც არ არის ორიგინალის ტოლი.

შეგიძლიათ მიიღოთ ან არ მიიღოთ ჩემი მსჯელობა - ეს თქვენი საქმეა. მაგრამ თუ ოდესმე შეგხვდებათ მათემატიკური პრობლემები, დაფიქრდით, მიჰყვებით თუ არა მათემატიკოსთა თაობების მიერ გავლილი ცრუ მსჯელობის გზას. მათემატიკის სწავლა ხომ, უპირველეს ყოვლისა, აყალიბებს ჩვენში აზროვნების სტაბილურ სტერეოტიპს და მხოლოდ ამის შემდეგ მატებს ჩვენს გონებრივ შესაძლებლობებს (ან, პირიქით, გვართმევს თავისუფალ აზროვნებას).

pozg.ru

კვირა, 4 აგვისტო, 2019 წ

ვასრულებდი სტატიის პოსტსკრიპტს და ვნახე ეს შესანიშნავი ტექსტი ვიკიპედიაზე:

ჩვენ ვკითხულობთ: „...ბაბილონის მათემატიკის მდიდარ თეორიულ საფუძველს არ გააჩნდა ჰოლისტიკური ხასიათი და დაყვანილ იქნა განსხვავებული ტექნიკის ერთობლიობამდე, მოკლებული საერთო სისტემისა და მტკიცებულების ბაზას“.

ვაა! რამდენად ჭკვიანები ვართ და რამდენად კარგად ვხედავთ სხვის ნაკლოვანებებს. გვიჭირს თანამედროვე მათემატიკას იმავე კონტექსტში შევხედოთ? ზემოაღნიშნული ტექსტის ოდნავ პერიფრაზირებით, მე პირადად მივიღე შემდეგი:

თანამედროვე მათემატიკის მდიდარი თეორიული საფუძველი არ არის ყოვლისმომცველი ბუნებით და დაყვანილია განსხვავებული სექციებით, მოკლებულია საერთო სისტემისა და მტკიცებულების ბაზას.

შორს არ წავალ ჩემი სიტყვების დასადასტურებლად - მას აქვს ენა და კონვენციები, რომლებიც განსხვავდება მათემატიკის მრავალი სხვა დარგის ენისა და კონვენციებისგან. მათემატიკის სხვადასხვა ფილიალში ერთსა და იმავე სახელს შეიძლება ჰქონდეს განსხვავებული მნიშვნელობა. მსურს პუბლიკაციების მთელი სერია მივუძღვნა თანამედროვე მათემატიკის ყველაზე აშკარა შეცდომებს. მალე გნახავ.

შაბათი, 3 აგვისტო, 2019 წ

როგორ დავყოთ ნაკრები ქვეჯგუფებად? ამისათვის თქვენ უნდა შეიყვანოთ ახალი საზომი ერთეული, რომელიც არის შერჩეული ნაკრების ზოგიერთ ელემენტში. მოდით შევხედოთ მაგალითს.

შეიძლება ბევრი გვქონდეს შედგება ოთხი ადამიანისგან. ეს ნაკრები იქმნება „ხალხის“ საფუძველზე. მოდით აღვნიშნოთ ამ ნაკრების ელემენტები ასოებით , ნომრის მქონე ხელმოწერა მიუთითებს ამ ნაკრების თითოეული ადამიანის სერიულ ნომერზე. შემოვიღოთ ახალი საზომი ერთეული „სქესი“ და აღვნიშნოთ ასოებით . ვინაიდან სექსუალური მახასიათებლები ყველა ადამიანშია თანდაყოლილი, ჩვენ ვამრავლებთ ნაკრების თითოეულ ელემენტს სქესიდან გამომდინარე . გაითვალისწინეთ, რომ ჩვენი „ადამიანების“ ნაკრები ახლა გახდა „გენდერული მახასიათებლების მქონე ადამიანების“ ნაკრები. ამის შემდეგ შეგვიძლია სექსუალური მახასიათებლები დავყოთ მამაკაცებად ბმდა ქალთა ბვსექსუალური მახასიათებლები. ახლა ჩვენ შეგვიძლია გამოვიყენოთ მათემატიკური ფილტრი: ჩვენ ვირჩევთ ერთ-ერთ ამ სექსუალურ მახასიათებელს, არ აქვს მნიშვნელობა რომელია - მამაკაცი თუ ქალი. თუ ადამიანს აქვს, მაშინ ვამრავლებთ ერთზე, თუ ასეთი ნიშანი არ არის, ვამრავლებთ ნულზე. შემდეგ კი ჩვეულებრივ სასკოლო მათემატიკას ვიყენებთ. ნახეთ რა მოხდა.

გამრავლების, შემცირებისა და გადაწყობის შემდეგ ჩვენ მივიღეთ ორი ქვეჯგუფი: კაცების ქვეჯგუფი ბმდა ქალების ქვეჯგუფი Bw. მათემატიკოსები დაახლოებით ერთნაირად მსჯელობენ, როდესაც ისინი იყენებენ სიმრავლეების თეორიას პრაქტიკაში. მაგრამ ისინი არ გვეუბნებიან დეტალებს, მაგრამ გვაძლევენ დასრულებულ შედეგს - "ბევრი ადამიანი შედგება მამაკაცების და ქალების ქვეჯგუფისგან". ბუნებრივია, შეიძლება გაგიჩნდეთ კითხვა: რამდენად სწორად იქნა გამოყენებული მათემატიკა ზემოთ ჩამოთვლილ გარდაქმნებში? გარწმუნებთ, რომ არსებითად ყველაფერი გაკეთდა, საკმარისია არითმეტიკის, ლოგიკური ალგებრის და მათემატიკის სხვა დარგების მათემატიკური საფუძვლების ცოდნა. რა არის ეს? სხვა დროს გეტყვით ამის შესახებ.

რაც შეეხება სუპერკომპლექტებს, შეგიძლიათ დააკავშიროთ ორი კომპლექტი ერთ სუპერკომპლექტში ამ ორი ნაკრების ელემენტებში არსებული საზომი ერთეულის არჩევით.

როგორც ხედავთ, საზომი ერთეულები და ჩვეულებრივი მათემატიკა სიმრავლეების თეორიას წარსულის რელიქვიად აქცევს. იმის ნიშანი, რომ სიმრავლეების თეორიაში ყველაფერი კარგად არ არის, არის ის, რომ მათემატიკოსებმა გამოიგონეს საკუთარი ენა და ჩანაწერები სიმრავლეების თეორიისთვის. მათემატიკოსები ისე მოქმედებდნენ, როგორც ერთხელ შამანები. მხოლოდ შამანებმა იციან როგორ გამოიყენონ თავიანთი „ცოდნა“ „სწორად“. ისინი გვასწავლიან ამ "ცოდნას".

დასასრულს, მინდა გაჩვენოთ, როგორ მანიპულირებენ მათემატიკოსები.

ორშაბათი, 7 იანვარი, 2019 წ

ჩვენს წელთაღრიცხვამდე მეხუთე საუკუნეში ძველმა ბერძენმა ფილოსოფოსმა ზენომ ელეამ ჩამოაყალიბა თავისი ცნობილი აპორიები, რომელთაგან ყველაზე ცნობილია „აქილევსი და კუს“ აპორია. აი, როგორ ჟღერს:

ვთქვათ, აქილევსი კუზე ათჯერ უფრო სწრაფად დარბის და ათასი ნაბიჯით უკან არის. იმ დროის განმავლობაში, რაც აქილევსს სჭირდება ამ მანძილის გასაშვებად, კუ ასი ნაბიჯით გაივლის იმავე მიმართულებით. როცა აქილევსი ას საფეხურს გარბის, კუს კიდევ ათი ნაბიჯი დაცოცავს და ა.შ. პროცესი უსასრულოდ გაგრძელდება, აქილევსი ვერასდროს დაეწია კუს.

ეს მსჯელობა ლოგიკური შოკი გახდა ყველა შემდგომი თაობისთვის. არისტოტელე, დიოგენე, კანტი, ჰეგელი, ჰილბერტი... ყველა ასე თუ ისე განიხილავდა ზენონის აპორიას. შოკი იმდენად ძლიერი იყო, რომ " ... დისკუსიები დღემდე გრძელდება სამეცნიერო საზოგადოებამ პარადოქსების არსის შესახებ საერთო მოსაზრებამდე მისვლა... საკითხის შესწავლაში ჩაერთო მათემატიკური ანალიზი, სიმრავლეების თეორია, ახალი ფიზიკური და ფილოსოფიური მიდგომები; ; არცერთი მათგანი არ გახდა პრობლემის საყოველთაოდ მიღებული გადაწყვეტა..."[ვიკიპედია, "ზენონის აპორია". ყველას ესმის, რომ ატყუებენ, მაგრამ არავის ესმის, რისგან შედგება მოტყუება.

მათემატიკური თვალსაზრისით, ზენონმა თავის აპორიაში ნათლად აჩვენა გადასვლა რაოდენობიდან . ეს გადასვლა გულისხმობს განაცხადს მუდმივის ნაცვლად. რამდენადაც მე მესმის, საზომი ცვლადი ერთეულების გამოყენების მათემატიკური აპარატი ან ჯერ არ არის შემუშავებული, ან არ არის გამოყენებული ზენონის აპორიაზე. ჩვენი ჩვეული ლოგიკის გამოყენება მახეში მიგვიყვანს. ჩვენ, აზროვნების ინერციიდან გამომდინარე, ვაკეთებთ დროის მუდმივ ერთეულებს საპასუხო მნიშვნელობაზე. ფიზიკური თვალსაზრისით, ეს ჰგავს დროის შენელებას, სანამ ის მთლიანად არ გაჩერდება იმ მომენტში, როდესაც აქილევსი კუს დაეწევა. თუ დრო გაჩერდება, აქილევსი ვეღარ ასწრებს კუს.

თუ ჩვენ ჩვეულ ლოგიკას შევაბრუნებთ, ყველაფერი თავის ადგილზე დგება. აქილევსი მუდმივი სიჩქარით დარბის. მისი გზის ყოველი მომდევნო სეგმენტი წინაზე ათჯერ მოკლეა. შესაბამისად, მის დაძლევაზე დახარჯული დრო წინაზე ათჯერ ნაკლებია. თუ ამ სიტუაციაში გამოვიყენებთ „უსასრულობის“ ცნებას, მაშინ სწორი იქნება ვთქვათ „აქილევსი კუს უსასრულოდ სწრაფად დაეწევა“.

როგორ ავიცილოთ თავიდან ეს ლოგიკური ხაფანგი? დარჩით დროის მუდმივ ერთეულებში და არ გადახვიდეთ ორმხრივ ერთეულებზე. ზენონის ენაზე ასე გამოიყურება:

იმ დროს, რაც აქილევსს სჭირდება ათასი ნაბიჯის გასაშვებად, კუს ასი ნაბიჯის გადახრით იმავე მიმართულებით. პირველის ტოლი შემდეგი დროის ინტერვალის განმავლობაში აქილევსი კიდევ ათას ნაბიჯს გაივლის, კუს კი ასი ნაბიჯით დაცოცავს. ახლა აქილევსი რვაასი ნაბიჯით უსწრებს კუს.

ეს მიდგომა ადეკვატურად აღწერს რეალობას ყოველგვარი ლოგიკური პარადოქსების გარეშე. მაგრამ ეს არ არის პრობლემის სრული გადაწყვეტა. აინშტაინის განცხადება სინათლის სიჩქარის დაუძლეველობის შესახებ ძალიან ჰგავს ზენონის აპორიას „აქილევსი და კუს“. ჯერ კიდევ გვიწევს ამ პრობლემის შესწავლა, გადახედვა და გადაჭრა. და გამოსავალი უნდა ვეძებოთ არა უსასრულოდ დიდი რაოდენობით, არამედ გაზომვის ერთეულებში.

ზენონის კიდევ ერთი საინტერესო აპორია მოგვითხრობს მფრინავი ისრის შესახებ:

მფრინავი ისარი უმოძრაოა, რადგან დროის ყოველ მომენტში ის ისვენებს, და რადგან ის ისვენებს დროის ყოველ მომენტში, ის ყოველთვის ისვენებს.

ამ აპორიაში ლოგიკური პარადოქსი დაძლეულია ძალიან მარტივად - საკმარისია იმის გარკვევა, რომ დროის ყოველ მომენტში მფრინავი ისარი ისვენებს სივრცის სხვადასხვა წერტილში, რაც, ფაქტობრივად, მოძრაობაა. აქ უნდა აღინიშნოს კიდევ ერთი წერტილი. გზაზე მანქანის ერთი ფოტოსურათიდან შეუძლებელია მისი გადაადგილების ფაქტის და მასამდე მანძილის დადგენა. იმის დასადგენად, მოძრაობს თუ არა მანქანა, გჭირდებათ ორი ფოტო გადაღებული ერთი და იგივე წერტილიდან დროის სხვადასხვა წერტილში, მაგრამ თქვენ ვერ განსაზღვრავთ მათგან მანძილს. მანქანამდე მანძილის დასადგენად, დაგჭირდებათ ორი ფოტო გადაღებული სივრცის სხვადასხვა წერტილიდან დროის ერთ მომენტში, მაგრამ მათგან ვერ განსაზღვრავთ მოძრაობის ფაქტს (რა თქმა უნდა, გამოთვლებისთვის დამატებითი მონაცემები მაინც გჭირდებათ, ტრიგონომეტრია დაგეხმარებათ ). რაზეც მინდა გავამახვილო განსაკუთრებული ყურადღება, არის ის, რომ ორი წერტილი დროისა და ორი წერტილი სივრცეში არის სხვადასხვა რამ, რაც არ უნდა აგვერიოს, რადგან ისინი სხვადასხვა შესაძლებლობებს იძლევა კვლევისთვის.
მე გაჩვენებთ პროცესს მაგალითით. ჩვენ ვირჩევთ "წითელ სქელს მუწუკში" - ეს არის ჩვენი "მთელი". ამავდროულად, ჩვენ ვხედავთ, რომ ეს ნივთები მშვილდით არის და არის მშვილდის გარეშე. ამის შემდეგ, ჩვენ ვირჩევთ "მთლიანობის" ნაწილს და ვქმნით კომპლექტს "მშვილდით". ასე იღებენ შამანები საკვებს თავიანთი სიმრავლის თეორიის რეალობასთან მიბმის გზით.

ახლა მოდით გავაკეთოთ პატარა ხრიკი. ავიღოთ „მყარი მუწუკით მშვილდთან ერთად“ და გავაერთიანოთ ეს „მთვლები“ ​​ფერის მიხედვით, შევარჩიოთ წითელი ელემენტები. ბევრი "წითელი" მივიღეთ. ახლა საბოლოო კითხვა: მიღებული კომპლექტები "მშვილდით" და "წითელი" იგივე ნაკრებია თუ ორი განსხვავებული ნაკრები? პასუხი მხოლოდ შამანებმა იციან. უფრო სწორად, თვითონაც არაფერი იციან, მაგრამ როგორც ამბობენ, ასე იქნება.

ეს მარტივი მაგალითი გვიჩვენებს, რომ სიმრავლეების თეორია სრულიად უსარგებლოა, როცა საქმე რეალობას ეხება. რა არის საიდუმლო? ჩვენ ჩამოვაყალიბეთ კომპლექტი "წითელი მყარი ერთად pimple და მშვილდი." ფორმირება მოხდა ოთხი სხვადასხვა საზომი ერთეულის მიხედვით: ფერი (წითელი), სიმტკიცე (მყარი), უხეშობა (მუწუკა), დეკორაცია (მშვილდით). მხოლოდ საზომი ერთეულების ნაკრები გვაძლევს საშუალებას ადეკვატურად აღვწეროთ რეალური ობიექტები მათემატიკის ენაზე. ასე გამოიყურება.

ასო „ა“ სხვადასხვა ინდექსებით მიუთითებს სხვადასხვა საზომ ერთეულზე. ფრჩხილებში მონიშნულია საზომი ერთეულები, რომლებითაც „მთელი“ გამოირჩევა წინასწარ ეტაპზე. საზომი ერთეული, რომლითაც კომპლექტი იქმნება, ამოღებულია ფრჩხილებიდან. ბოლო ხაზი აჩვენებს საბოლოო შედეგს - ნაკრების ელემენტს. როგორც ხედავთ, თუ ჩვენ ვიყენებთ გაზომვის ერთეულებს ნაკრების შესაქმნელად, მაშინ შედეგი არ არის დამოკიდებული ჩვენი მოქმედებების თანმიმდევრობაზე. და ეს მათემატიკაა და არა შამანების ცეკვა ტამბურით. შამანებს შეუძლიათ „ინტუიტიურად“ მივიდნენ იმავე შედეგამდე, ამტკიცებენ, რომ ეს „აშკარაა“, რადგან საზომი ერთეულები არ არის მათი „მეცნიერული“ არსენალის ნაწილი.

საზომი ერთეულების გამოყენებით, ძალიან ადვილია ერთი ნაკრების გაყოფა ან რამდენიმე ნაკრების ერთ სუპერსეტში გაერთიანება. მოდით უფრო ახლოს მივხედოთ ამ პროცესის ალგებრას.

ტრიგონომეტრიული წრე. ერთეული წრე. ნომრის წრე. რა არის ეს?

ყურადღება!
არის დამატებითი
მასალები 555-ე სპეციალურ ნაწილში.
მათთვის, ვინც ძალიან "არც ძალიან..."
და მათთვის, ვინც "ძალიან...")

ძალიან ხშირად ტერმინები ტრიგონომეტრიული წრე, ერთეული წრე, რიცხვითი წრეცუდად ესმით სტუდენტები. და სრულიად უშედეგოდ. ეს ცნებები ძლიერი და უნივერსალური დამხმარეა ტრიგონომეტრიის ყველა სფეროში. სინამდვილეში, ეს არის კანონიერი მოტყუების ფურცელი! დავხატე ტრიგონომეტრიული წრე და მაშინვე ვნახე პასუხები! მაცდური? ასე რომ, ვისწავლოთ, ცოდვა იქნება ასეთი რამ არ გამოვიყენოთ. უფრო მეტიც, ეს საერთოდ არ არის რთული.

ტრიგონომეტრიულ წრესთან წარმატებით მუშაობისთვის, თქვენ უნდა იცოდეთ მხოლოდ სამი რამ.

თუ მოგწონთ ეს საიტი...

სხვათა შორის, მე მაქვს კიდევ რამდენიმე საინტერესო საიტი თქვენთვის.)

შეგიძლიათ ივარჯიშოთ მაგალითების ამოხსნაში და გაიგოთ თქვენი დონე. ტესტირება მყისიერი გადამოწმებით. ვისწავლოთ - ინტერესით!)

შეგიძლიათ გაეცნოთ ფუნქციებს და წარმოებულებს.

მარტივად რომ ვთქვათ, ეს არის წყალში მოხარშული ბოსტნეული სპეციალური რეცეპტის მიხედვით. განვიხილავ ორ საწყის კომპონენტს (ბოსტნეულის სალათას და წყალს) და მზა შედეგს - ბორშს. გეომეტრიულად, ის შეიძლება მივიჩნიოთ როგორც მართკუთხედი, რომლის ერთი მხარე წარმოადგენს სალათის ფოთლებს, ხოლო მეორე მხარე წყალს. ამ ორი მხარის ჯამი მიუთითებს ბორშზე. ასეთი "ბორშის" მართკუთხედის დიაგონალი და ფართობი არის წმინდა მათემატიკური ცნებები და არასოდეს გამოიყენება ბორშის რეცეპტებში.


როგორ გადაიქცევა სალათის ფოთოლი და წყალი ბორშჩად მათემატიკური თვალსაზრისით? როგორ შეიძლება ორი წრფის სეგმენტის ჯამი გახდეს ტრიგონომეტრია? ამის გასაგებად ჩვენ გვჭირდება წრფივი კუთხოვანი ფუნქციები.


მათემატიკის სახელმძღვანელოებში წრფივი კუთხოვანი ფუნქციების შესახებ ვერაფერს იპოვით. მაგრამ მათ გარეშე არ შეიძლება მათემატიკა. მათემატიკის კანონები, ისევე როგორც ბუნების კანონები, მუშაობს იმისდა მიუხედავად, ვიცით თუ არა მათი არსებობის შესახებ.

წრფივი კუთხოვანი ფუნქციები შეკრების კანონებია.ნახეთ, როგორ იქცევა ალგებრა გეომეტრიად და გეომეტრია ტრიგონომეტრიად.

შესაძლებელია თუ არა ხაზოვანი კუთხოვანი ფუნქციების გარეშე? ეს შესაძლებელია, რადგან მათემატიკოსები მაინც ახერხებენ მათ გარეშე. მათემატიკოსთა ხრიკი იმაში მდგომარეობს, რომ ისინი ყოველთვის გვეუბნებიან მხოლოდ იმ ამოცანების შესახებ, რომელთა გადაჭრაც თავად იციან, და არასოდეს გვეუბნებიან იმ ამოცანების შესახებ, რომელთა გადაჭრაც მათ არ შეუძლიათ. შეხედე. თუ ვიცით შეკრების შედეგი და ერთი წევრი, გამოკლებას ვიყენებთ მეორე წევრის საპოვნელად. ყველა. ჩვენ არ ვიცით სხვა პრობლემები და არ ვიცით როგორ მოვაგვაროთ ისინი. რა უნდა გავაკეთოთ, თუ მხოლოდ მიმატების შედეგი ვიცით და ორივე ტერმინი არ ვიცით? ამ შემთხვევაში, დამატების შედეგი უნდა დაიშალოს ორ ტერმინად წრფივი კუთხოვანი ფუნქციების გამოყენებით. შემდეგი, ჩვენ თვითონ ვირჩევთ რა შეიძლება იყოს ერთი ტერმინი და წრფივი კუთხოვანი ფუნქციები გვიჩვენებს, თუ როგორი უნდა იყოს მეორე წევრი ისე, რომ დამატების შედეგი იყოს ზუსტად ის, რაც ჩვენ გვჭირდება. ასეთი წყვილი ტერმინების უსასრულო რაოდენობა შეიძლება იყოს. ყოველდღიურ ცხოვრებაში ჩვენ კარგად ვხვდებით ჯამის დაშლის გარეშე, ჩვენთვის საკმარისია. მაგრამ ბუნების კანონების მეცნიერულ კვლევაში, ჯამის კომპონენტებად დაშლა შეიძლება ძალიან სასარგებლო იყოს.

დამატების კიდევ ერთი კანონი, რომელზეც მათემატიკოსებს არ უყვართ ლაპარაკი (კიდევ ერთი მათი ხრიკი) მოითხოვს, რომ ტერმინებს ჰქონდეთ იგივე საზომი ერთეულები. სალათისთვის, წყლისა და ბორშისთვის ეს შეიძლება იყოს წონის, მოცულობის, ღირებულების ან საზომი ერთეული.

ფიგურაში ნაჩვენებია მათემატიკური განსხვავების ორი დონე. პირველი დონე არის განსხვავებები რიცხვების ველში, რომლებიც მითითებულია , , . ამას აკეთებენ მათემატიკოსები. მეორე დონე არის განსხვავებები საზომი ერთეულების ველში, რომლებიც ნაჩვენებია კვადრატულ ფრჩხილებში და მითითებულია ასოებით. . ამას აკეთებენ ფიზიკოსები. ჩვენ შეგვიძლია გავიგოთ მესამე დონე - განსხვავებები აღწერილი ობიექტების არეალში. სხვადასხვა ობიექტს შეიძლება ჰქონდეს იგივე რაოდენობის საზომი ერთეული. რამდენად მნიშვნელოვანია ეს, ჩვენ ვხედავთ ბორშის ტრიგონომეტრიის მაგალითს. თუ ჩვენ დავამატებთ ხელმოწერებს ერთი და იგივე ერთეულის აღნიშვნას სხვადასხვა ობიექტისთვის, შეგვიძლია ზუსტად ვთქვათ, რა მათემატიკური სიდიდე აღწერს კონკრეტულ ობიექტს და როგორ იცვლება ის დროთა განმავლობაში ან ჩვენი მოქმედებების გამო. წერილი წყალს დავნიშნავ ასოთი სალათს დავნიშნავ ასოთი - ბორში. ასე გამოიყურება ბორშჩის წრფივი კუთხოვანი ფუნქციები.

თუ ავიღებთ წყლის ნაწილს და სალათის ნაწილს, ისინი ერთად გადაიქცევიან ბორშჩის ერთ პორციაში. აქვე გირჩევთ, ცოტათი დაისვენოთ ბორშჩისგან და გაიხსენოთ თქვენი შორეული ბავშვობა. გახსოვთ, როგორ გვასწავლეს კურდღლებისა და იხვების შეკრება? საჭირო იყო იმის დადგენა, რამდენი ცხოველი იქნებოდა. რა გვასწავლეს მაშინ? გვასწავლეს საზომი ერთეულების გამოყოფა რიცხვებისგან და რიცხვების შეკრება. დიახ, ნებისმიერი ნომერი შეიძლება დაემატოს ნებისმიერ სხვა ნომერს. ეს არის პირდაპირი გზა თანამედროვე მათემატიკის აუტიზმისკენ - ჩვენ ამას ვაკეთებთ გაუგებრად, რა, გაუგებრად რატომ და ძალიან ცუდად გვესმის, როგორ უკავშირდება ეს რეალობას, სამი დონის განსხვავების გამო, მათემატიკოსები მუშაობენ მხოლოდ ერთით. უფრო სწორი იქნება ვისწავლოთ როგორ გადავიდეთ ერთი საზომი ერთეულიდან მეორეზე.

კურდღლების, იხვების და პატარა ცხოველების დათვლა შესაძლებელია ნაწილებად. სხვადასხვა ობიექტების საზომი ერთი საერთო ერთეული საშუალებას გვაძლევს დავამატოთ ისინი. ეს არის პრობლემის საბავშვო ვერსია. მოდით შევხედოთ მსგავს პრობლემას მოზრდილებში. რას იღებთ, როცა კურდღლებს და ფულს დაამატებთ? აქ ჩვენ შეგვიძლია შემოგთავაზოთ ორი გამოსავალი.

პირველი ვარიანტი. ჩვენ განვსაზღვრავთ კურდღლების საბაზრო ღირებულებას და ვამატებთ მას ხელმისაწვდომ თანხას. ჩვენ მივიღეთ ჩვენი სიმდიდრის მთლიანი ღირებულება ფულადი თვალსაზრისით.

მეორე ვარიანტი. თქვენ შეგიძლიათ დაამატოთ კურდღლების რაოდენობა ჩვენს ბანკნოტების რაოდენობას. მოძრავ ქონებას ნაწილებად მივიღებთ.

როგორც ხედავთ, იგივე დამატების კანონი საშუალებას გაძლევთ მიიღოთ განსხვავებული შედეგები. ეს ყველაფერი დამოკიდებულია იმაზე, თუ რა გვინდა ვიცოდეთ.

მაგრამ დავუბრუნდეთ ჩვენს ბორშს. ახლა ჩვენ ვხედავთ, რა მოხდება ხაზოვანი კუთხოვანი ფუნქციების სხვადასხვა კუთხის მნიშვნელობებისთვის.

კუთხე არის ნული. სალათი გვაქვს, წყალი კი არა. ბორშს ვერ ვამზადებთ. ბორშის რაოდენობაც ნულის ტოლია. ეს საერთოდ არ ნიშნავს იმას, რომ ნულოვანი ბორში ნულ წყალს უდრის. შეიძლება იყოს ნულოვანი ბორში ნულოვანი სალათით (მართი კუთხით).


პირადად ჩემთვის ეს არის მთავარი მათემატიკური დასტური იმისა, რომ . ნული არ ცვლის რიცხვს დამატებისას. ეს იმიტომ ხდება, რომ დამატება თავისთავად შეუძლებელია, თუ არის მხოლოდ ერთი ტერმინი და აკლია მეორე წევრი. თქვენ შეგიძლიათ იგრძნოთ ამის შესახებ, როგორც გსურთ, მაგრამ გახსოვდეთ - ყველა მათემატიკური ოპერაცია ნულთან ერთად გამოიგონეს თავად მათემატიკოსებმა, ასე რომ, გადააგდეთ თქვენი ლოგიკა და სულელურად დაასხით მათემატიკოსების მიერ გამოგონილი განმარტებები: "ნულზე გაყოფა შეუძლებელია", "ნებისმიერი რიცხვი გამრავლებული. ნული უდრის ნულს", "ნულ წერტილს მიღმა" და სხვა სისულელეები. საკმარისია ერთხელ გვახსოვდეს, რომ ნული რიცხვი არ არის და აღარასოდეს გაგიჩნდება კითხვა, ნული ნატურალური რიცხვია თუ არა, რადგან ასეთი კითხვა ყოველგვარ მნიშვნელობას კარგავს: როგორ შეიძლება რიცხვად ჩაითვალოს ის, რაც არ არის რიცხვი. ? ეს ჰგავს კითხვას, თუ რა ფერის უნდა იყოს კლასიფიცირებული უხილავი ფერი. რიცხვისთვის ნულის მიმატება იგივეა, რაც საღებავით ხატვა, რომელიც არ არის. მშრალი ფუნჯი ვატრიალეთ და ყველას ვუთხარით, რომ „ჩვენ ვხატავთ“. მაგრამ ცოტას ვშორდები.

კუთხე არის ნულზე მეტი, მაგრამ ორმოცდახუთი გრადუსზე ნაკლები. სალათის ფოთოლი ბევრი გვაქვს, მაგრამ წყალი არ არის საკმარისი. შედეგად მივიღებთ სქელ ბორშს.

კუთხე ორმოცდახუთი გრადუსია. თანაბარი რაოდენობით გვაქვს წყალი და სალათი. ეს არის სრულყოფილი ბორში (მაპატიეთ, მზარეულებო, ეს მხოლოდ მათემატიკაა).

კუთხე ორმოცდახუთ გრადუსზე მეტია, მაგრამ ოთხმოცდაათ გრადუსზე ნაკლები. ბევრი წყალი გვაქვს და ცოტა სალათი. მიიღებთ თხევად ბორშს.

მართი კუთხე. წყალი გვაქვს. სალათიდან რჩება მხოლოდ მოგონებები, რადგან ჩვენ ვაგრძელებთ კუთხის გაზომვას იმ ხაზიდან, რომელიც ოდესღაც სალათს აღნიშნავდა. ბორშს ვერ ვამზადებთ. ბორშის რაოდენობა ნულის ტოლია. ამ შემთხვევაში მოითმინეთ და დალიეთ წყალი სანამ გაქვთ)))

აქ. რაღაც ისეთი. აქ სხვა ისტორიების მოყოლა შემიძლია, რაც აქ უფრო მიზანშეწონილი იქნება.

ორ მეგობარს ჰქონდა წილი საერთო ბიზნესში. ერთი მათგანის მოკვლის შემდეგ ყველაფერი მეორეზე გადავიდა.

მათემატიკის გაჩენა ჩვენს პლანეტაზე.

ყველა ეს ამბავი მოთხრობილია მათემატიკის ენაზე წრფივი კუთხოვანი ფუნქციების გამოყენებით. სხვა დროს მე გაჩვენებთ ამ ფუნქციების რეალურ ადგილს მათემატიკის სტრუქტურაში. ამასობაში დავუბრუნდეთ ბორშის ტრიგონომეტრიას და განვიხილოთ პროგნოზები.

შაბათი, 26 ოქტომბერი, 2019 წ

ოთხშაბათი, 7 აგვისტო, 2019 წ

საუბრის დასასრულს, ჩვენ უნდა განვიხილოთ უსასრულო ნაკრები. საქმე იმაშია, რომ „უსასრულობის“ ცნება მათემატიკოსებზე ისე მოქმედებს, როგორც ბოა კონსტრიქტორი კურდღელზე. უსასრულობის აკანკალებული საშინელება მათემატიკოსებს ართმევს საღ აზრს. აი მაგალითი:

ორიგინალური წყარო მდებარეობს. ალფა ნიშნავს რეალურ რიცხვს. ზემოთ მოცემულ გამონათქვამებში ტოლობის ნიშანი მიუთითებს იმაზე, რომ თუ უსასრულობას დაუმატებთ რიცხვს ან უსასრულობას, არაფერი შეიცვლება, შედეგი იქნება იგივე უსასრულობა. თუ მაგალითისთვის ავიღებთ ნატურალური რიცხვების უსასრულო სიმრავლეს, მაშინ განხილული მაგალითები შეიძლება წარმოდგენილი იყოს შემდეგი სახით:

ნათლად დასამტკიცებლად, რომ ისინი მართალი იყვნენ, მათემატიკოსებმა მრავალი განსხვავებული მეთოდი მოიგონეს. პირადად მე, ყველა ამ მეთოდს ვუყურებ, როგორც ტამბურებთან მოცეკვავე შამანებს. არსებითად, ყველა მათგანი ემყარება იმ ფაქტს, რომ ან ზოგიერთი ოთახი დაუსახლებელია და ახალი სტუმრები შემოდიან, ან რომ ზოგიერთი სტუმარი დერეფანში გააგდებს სტუმრებისთვის ადგილს (ძალიან ადამიანურად). მე წარმოვადგინე ჩემი შეხედულება ასეთ გადაწყვეტილებებზე ფანტასტიკური ისტორიის სახით ქერაზე. რას ეფუძნება ჩემი მსჯელობა? უსასრულო რაოდენობის ვიზიტორთა გადატანას უსასრულო დრო სჭირდება. მას შემდეგ რაც ჩვენ გავათავისუფლებთ პირველ ოთახს სტუმრისთვის, ერთ-ერთი სტუმარი ყოველთვის გადის დერეფნის გასწვრივ მისი ოთახიდან მეორე ოთახში დროის ბოლომდე. რა თქმა უნდა, დროის ფაქტორი შეიძლება სულელურად იგნორირებული იყოს, მაგრამ ეს იქნება კატეგორიაში "არავითარი კანონი არ არის დაწერილი სულელებისთვის". ეს ყველაფერი დამოკიდებულია იმაზე, თუ რას ვაკეთებთ: რეალობის მორგება მათემატიკურ თეორიებზე ან პირიქით.

რა არის "უსასრულო სასტუმრო"? უსასრულო სასტუმრო არის სასტუმრო, რომელსაც ყოველთვის აქვს ნებისმიერი რაოდენობის ცარიელი საწოლი, მიუხედავად იმისა, თუ რამდენი ნომერია დაკავებული. თუ გაუთავებელი „ვიზიტორის“ დერეფნის ყველა ოთახი დაკავებულია, არის კიდევ ერთი გაუთავებელი დერეფანი „სასტუმრო“ ოთახებით. ასეთი დერეფნების უსასრულო რაოდენობა იქნება. უფრო მეტიც, "უსასრულო სასტუმროს" აქვს უსასრულო რაოდენობის სართულები უსასრულო რაოდენობის შენობებში უსასრულო რაოდენობის პლანეტებზე უსასრულო რაოდენობის სამყაროებში, რომლებიც შექმნილია ღმერთების უსასრულო რაოდენობით. მათემატიკოსები ვერ ახერხებენ დისტანცირებას ბანალური ყოველდღიური პრობლემებისგან: ყოველთვის არის მხოლოდ ერთი ღმერთი-ალაჰ-ბუდა, არის მხოლოდ ერთი სასტუმრო, არის მხოლოდ ერთი დერეფანი. ასე რომ, მათემატიკოსები ცდილობენ სასტუმროს ნომრების სერიული ნომრების ჟონგლირებას და დაგვარწმუნონ, რომ შესაძლებელია „შეიძულოს შეუძლებელში“.

მე გაჩვენებთ ჩემი მსჯელობის ლოგიკას ნატურალური რიცხვების უსასრულო სიმრავლის მაგალითის გამოყენებით. ჯერ თქვენ უნდა უპასუხოთ ძალიან მარტივ კითხვას: ნატურალური რიცხვების რამდენი სიმრავლეა - ერთი ან ბევრი? ამ კითხვაზე სწორი პასუხი არ არსებობს, რადგან ჩვენ თვითონ გამოვიგონეთ რიცხვები ბუნებაში. დიახ, ბუნება შესანიშნავია დათვლაში, მაგრამ ამისათვის ის იყენებს სხვა მათემატიკურ ინსტრუმენტებს, რომლებიც ჩვენთვის არ არის ნაცნობი. მე გეტყვით რას ფიქრობს ბუნება სხვა დროს. ვინაიდან ჩვენ გამოვიგონეთ რიცხვები, ჩვენ თვითონ გადავწყვეტთ ნატურალური რიცხვების რამდენი კომპლექტი არსებობს. განვიხილოთ ორივე ვარიანტი, როგორც ეს შეეფერება ნამდვილ მეცნიერებს.

ვარიანტი ერთი. „მოდით მოგვცეს“ ნატურალური რიცხვების ერთი ნაკრები, რომელიც მშვიდად დევს თაროზე. ამ კომპლექტს თაროდან ვიღებთ. ესე იგი, თაროზე სხვა ნატურალური რიცხვები აღარ დარჩა და არსად წასაყვანი. ჩვენ ვერ დავამატებთ ერთს ამ კომპლექტში, რადგან ის უკვე გვაქვს. რა მოხდება, თუ მართლა გინდა? პრობლემა არ არის. ჩვენ შეგვიძლია ავიღოთ უკვე აღებული ნაკრებიდან და დავაბრუნოთ თაროზე. ამის შემდეგ შეგვიძლია თაროდან ავიღოთ ერთი და დავამატოთ რაც დაგვრჩა. შედეგად, ჩვენ კვლავ მივიღებთ ნატურალური რიცხვების უსასრულო სიმრავლეს. თქვენ შეგიძლიათ ჩამოწეროთ ყველა ჩვენი მანიპულაცია ასე:

ჩავწერე მოქმედებები ალგებრული აღნიშვნით და სიმრავლეების თეორიის აღნიშვნით, სიმრავლის ელემენტების დეტალური ჩამონათვალით. სუბსკრიპტი მიუთითებს, რომ ჩვენ გვაქვს ნატურალური რიცხვების ერთი და ერთადერთი ნაკრები. გამოდის, რომ ნატურალური რიცხვების სიმრავლე უცვლელი დარჩება მხოლოდ იმ შემთხვევაში, თუ მას ერთი გამოაკლდება და იგივე ერთეული დაემატება.

ვარიანტი ორი. ჩვენს თაროზე ნატურალური რიცხვების მრავალი განსხვავებული უსასრულო ნაკრები გვაქვს. ხაზს ვუსვამ - განსხვავებულს, მიუხედავად იმისა, რომ ისინი პრაქტიკულად არ განსხვავდებიან. ავიღოთ ერთ-ერთი ასეთი ნაკრები. შემდეგ ვიღებთ ერთს ნატურალური რიცხვების მეორე სიმრავლიდან და ვამატებთ უკვე აღებულ სიმრავლეს. შეგვიძლია ნატურალური რიცხვების ორი კომპლექტიც კი დავამატოთ. ეს არის ის, რაც ჩვენ ვიღებთ:

ხელმოწერები "ერთი" და "ორი" მიუთითებს, რომ ეს ელემენტები განსხვავებულ კომპლექტს ეკუთვნოდა. დიახ, თუ ერთს დაუმატებთ უსასრულო კომპლექტს, შედეგი ასევე იქნება უსასრულო ნაკრები, მაგრამ ის არ იქნება იგივე, რაც ორიგინალური ნაკრები. თუ დაუმატებთ კიდევ ერთ უსასრულო სიმრავლეს ერთ უსასრულო სიმრავლეს, შედეგი იქნება ახალი უსასრულო სიმრავლე, რომელიც შედგება პირველი ორი სიმრავლის ელემენტებისაგან.

ნატურალური რიცხვების სიმრავლე გამოიყენება დასათვლელად ისევე, როგორც საზომი. ახლა წარმოიდგინეთ, რომ სახაზავს ერთი სანტიმეტრი დაუმატეთ. ეს იქნება განსხვავებული ხაზი, რომელიც არ არის ორიგინალის ტოლი.

შეგიძლიათ მიიღოთ ან არ მიიღოთ ჩემი მსჯელობა - ეს თქვენი საქმეა. მაგრამ თუ ოდესმე შეგხვდებათ მათემატიკური პრობლემები, დაფიქრდით, მიჰყვებით თუ არა მათემატიკოსთა თაობების მიერ გავლილი ცრუ მსჯელობის გზას. მათემატიკის სწავლა ხომ, უპირველეს ყოვლისა, აყალიბებს ჩვენში აზროვნების სტაბილურ სტერეოტიპს და მხოლოდ ამის შემდეგ მატებს ჩვენს გონებრივ შესაძლებლობებს (ან, პირიქით, გვართმევს თავისუფალ აზროვნებას).

pozg.ru

კვირა, 4 აგვისტო, 2019 წ

ვასრულებდი სტატიის პოსტსკრიპტს და ვნახე ეს შესანიშნავი ტექსტი ვიკიპედიაზე:

ჩვენ ვკითხულობთ: „...ბაბილონის მათემატიკის მდიდარ თეორიულ საფუძველს არ გააჩნდა ჰოლისტიკური ხასიათი და დაყვანილ იქნა განსხვავებული ტექნიკის ერთობლიობამდე, მოკლებული საერთო სისტემისა და მტკიცებულების ბაზას“.

ვაა! რამდენად ჭკვიანები ვართ და რამდენად კარგად ვხედავთ სხვის ნაკლოვანებებს. გვიჭირს თანამედროვე მათემატიკას იმავე კონტექსტში შევხედოთ? ზემოაღნიშნული ტექსტის ოდნავ პერიფრაზირებით, მე პირადად მივიღე შემდეგი:

თანამედროვე მათემატიკის მდიდარი თეორიული საფუძველი არ არის ყოვლისმომცველი ბუნებით და დაყვანილია განსხვავებული სექციებით, მოკლებულია საერთო სისტემისა და მტკიცებულების ბაზას.

შორს არ წავალ ჩემი სიტყვების დასადასტურებლად - მას აქვს ენა და კონვენციები, რომლებიც განსხვავდება მათემატიკის მრავალი სხვა დარგის ენისა და კონვენციებისგან. მათემატიკის სხვადასხვა ფილიალში ერთსა და იმავე სახელს შეიძლება ჰქონდეს განსხვავებული მნიშვნელობა. მსურს პუბლიკაციების მთელი სერია მივუძღვნა თანამედროვე მათემატიკის ყველაზე აშკარა შეცდომებს. მალე გნახავ.

შაბათი, 3 აგვისტო, 2019 წ

როგორ დავყოთ ნაკრები ქვეჯგუფებად? ამისათვის თქვენ უნდა შეიყვანოთ ახალი საზომი ერთეული, რომელიც არის შერჩეული ნაკრების ზოგიერთ ელემენტში. მოდით შევხედოთ მაგალითს.

შეიძლება ბევრი გვქონდეს შედგება ოთხი ადამიანისგან. ეს ნაკრები იქმნება „ხალხის“ საფუძველზე. მოდით აღვნიშნოთ ამ ნაკრების ელემენტები ასოებით , ნომრის მქონე ხელმოწერა მიუთითებს ამ ნაკრების თითოეული ადამიანის სერიულ ნომერზე. შემოვიღოთ ახალი საზომი ერთეული „სქესი“ და აღვნიშნოთ ასოებით . ვინაიდან სექსუალური მახასიათებლები ყველა ადამიანშია თანდაყოლილი, ჩვენ ვამრავლებთ ნაკრების თითოეულ ელემენტს სქესიდან გამომდინარე . გაითვალისწინეთ, რომ ჩვენი „ადამიანების“ ნაკრები ახლა გახდა „გენდერული მახასიათებლების მქონე ადამიანების“ ნაკრები. ამის შემდეგ შეგვიძლია სექსუალური მახასიათებლები დავყოთ მამაკაცებად ბმდა ქალთა ბვსექსუალური მახასიათებლები. ახლა ჩვენ შეგვიძლია გამოვიყენოთ მათემატიკური ფილტრი: ჩვენ ვირჩევთ ერთ-ერთ ამ სექსუალურ მახასიათებელს, არ აქვს მნიშვნელობა რომელია - მამაკაცი თუ ქალი. თუ ადამიანს აქვს, მაშინ ვამრავლებთ ერთზე, თუ ასეთი ნიშანი არ არის, ვამრავლებთ ნულზე. შემდეგ კი ჩვეულებრივ სასკოლო მათემატიკას ვიყენებთ. ნახეთ რა მოხდა.

გამრავლების, შემცირებისა და გადაწყობის შემდეგ ჩვენ მივიღეთ ორი ქვეჯგუფი: კაცების ქვეჯგუფი ბმდა ქალების ქვეჯგუფი Bw. მათემატიკოსები დაახლოებით ერთნაირად მსჯელობენ, როდესაც ისინი იყენებენ სიმრავლეების თეორიას პრაქტიკაში. მაგრამ ისინი არ გვეუბნებიან დეტალებს, მაგრამ გვაძლევენ დასრულებულ შედეგს - "ბევრი ადამიანი შედგება მამაკაცების და ქალების ქვეჯგუფისგან". ბუნებრივია, შეიძლება გაგიჩნდეთ კითხვა: რამდენად სწორად იქნა გამოყენებული მათემატიკა ზემოთ ჩამოთვლილ გარდაქმნებში? გარწმუნებთ, რომ არსებითად ყველაფერი გაკეთდა, საკმარისია არითმეტიკის, ლოგიკური ალგებრის და მათემატიკის სხვა დარგების მათემატიკური საფუძვლების ცოდნა. რა არის ეს? სხვა დროს გეტყვით ამის შესახებ.

რაც შეეხება სუპერკომპლექტებს, შეგიძლიათ დააკავშიროთ ორი კომპლექტი ერთ სუპერკომპლექტში ამ ორი ნაკრების ელემენტებში არსებული საზომი ერთეულის არჩევით.

როგორც ხედავთ, საზომი ერთეულები და ჩვეულებრივი მათემატიკა სიმრავლეების თეორიას წარსულის რელიქვიად აქცევს. იმის ნიშანი, რომ სიმრავლეების თეორიაში ყველაფერი კარგად არ არის, არის ის, რომ მათემატიკოსებმა გამოიგონეს საკუთარი ენა და ჩანაწერები სიმრავლეების თეორიისთვის. მათემატიკოსები ისე მოქმედებდნენ, როგორც ერთხელ შამანები. მხოლოდ შამანებმა იციან როგორ გამოიყენონ თავიანთი „ცოდნა“ „სწორად“. ისინი გვასწავლიან ამ "ცოდნას".

დასასრულს, მინდა გაჩვენოთ, როგორ მანიპულირებენ მათემატიკოსები.

ორშაბათი, 7 იანვარი, 2019 წ

ჩვენს წელთაღრიცხვამდე მეხუთე საუკუნეში ძველმა ბერძენმა ფილოსოფოსმა ზენომ ელეამ ჩამოაყალიბა თავისი ცნობილი აპორიები, რომელთაგან ყველაზე ცნობილია „აქილევსი და კუს“ აპორია. აი, როგორ ჟღერს:

ვთქვათ, აქილევსი კუზე ათჯერ უფრო სწრაფად დარბის და ათასი ნაბიჯით უკან არის. იმ დროის განმავლობაში, რაც აქილევსს სჭირდება ამ მანძილის გასაშვებად, კუ ასი ნაბიჯით გაივლის იმავე მიმართულებით. როცა აქილევსი ას საფეხურს გარბის, კუს კიდევ ათი ნაბიჯი დაცოცავს და ა.შ. პროცესი უსასრულოდ გაგრძელდება, აქილევსი ვერასდროს დაეწია კუს.

ეს მსჯელობა ლოგიკური შოკი გახდა ყველა შემდგომი თაობისთვის. არისტოტელე, დიოგენე, კანტი, ჰეგელი, ჰილბერტი... ყველა ასე თუ ისე განიხილავდა ზენონის აპორიას. შოკი იმდენად ძლიერი იყო, რომ " ... დისკუსიები დღემდე გრძელდება სამეცნიერო საზოგადოებამ პარადოქსების არსის შესახებ საერთო მოსაზრებამდე მისვლა... საკითხის შესწავლაში ჩაერთო მათემატიკური ანალიზი, სიმრავლეების თეორია, ახალი ფიზიკური და ფილოსოფიური მიდგომები; ; არცერთი მათგანი არ გახდა პრობლემის საყოველთაოდ მიღებული გადაწყვეტა..."[ვიკიპედია, "ზენონის აპორია". ყველას ესმის, რომ ატყუებენ, მაგრამ არავის ესმის, რისგან შედგება მოტყუება.

მათემატიკური თვალსაზრისით, ზენონმა თავის აპორიაში ნათლად აჩვენა გადასვლა რაოდენობიდან . ეს გადასვლა გულისხმობს განაცხადს მუდმივის ნაცვლად. რამდენადაც მე მესმის, საზომი ცვლადი ერთეულების გამოყენების მათემატიკური აპარატი ან ჯერ არ არის შემუშავებული, ან არ არის გამოყენებული ზენონის აპორიაზე. ჩვენი ჩვეული ლოგიკის გამოყენება მახეში მიგვიყვანს. ჩვენ, აზროვნების ინერციიდან გამომდინარე, ვაკეთებთ დროის მუდმივ ერთეულებს საპასუხო მნიშვნელობაზე. ფიზიკური თვალსაზრისით, ეს ჰგავს დროის შენელებას, სანამ ის მთლიანად არ გაჩერდება იმ მომენტში, როდესაც აქილევსი კუს დაეწევა. თუ დრო გაჩერდება, აქილევსი ვეღარ ასწრებს კუს.

თუ ჩვენ ჩვეულ ლოგიკას შევაბრუნებთ, ყველაფერი თავის ადგილზე დგება. აქილევსი მუდმივი სიჩქარით დარბის. მისი გზის ყოველი მომდევნო სეგმენტი წინაზე ათჯერ მოკლეა. შესაბამისად, მის დაძლევაზე დახარჯული დრო წინაზე ათჯერ ნაკლებია. თუ ამ სიტუაციაში გამოვიყენებთ „უსასრულობის“ ცნებას, მაშინ სწორი იქნება ვთქვათ „აქილევსი კუს უსასრულოდ სწრაფად დაეწევა“.

როგორ ავიცილოთ თავიდან ეს ლოგიკური ხაფანგი? დარჩით დროის მუდმივ ერთეულებში და არ გადახვიდეთ ორმხრივ ერთეულებზე. ზენონის ენაზე ასე გამოიყურება:

იმ დროს, რაც აქილევსს სჭირდება ათასი ნაბიჯის გასაშვებად, კუს ასი ნაბიჯის გადახრით იმავე მიმართულებით. პირველის ტოლი შემდეგი დროის ინტერვალის განმავლობაში აქილევსი კიდევ ათას ნაბიჯს გაივლის, კუს კი ასი ნაბიჯით დაცოცავს. ახლა აქილევსი რვაასი ნაბიჯით უსწრებს კუს.

ეს მიდგომა ადეკვატურად აღწერს რეალობას ყოველგვარი ლოგიკური პარადოქსების გარეშე. მაგრამ ეს არ არის პრობლემის სრული გადაწყვეტა. აინშტაინის განცხადება სინათლის სიჩქარის დაუძლეველობის შესახებ ძალიან ჰგავს ზენონის აპორიას „აქილევსი და კუს“. ჯერ კიდევ გვიწევს ამ პრობლემის შესწავლა, გადახედვა და გადაჭრა. და გამოსავალი უნდა ვეძებოთ არა უსასრულოდ დიდი რაოდენობით, არამედ გაზომვის ერთეულებში.

ზენონის კიდევ ერთი საინტერესო აპორია მოგვითხრობს მფრინავი ისრის შესახებ:

მფრინავი ისარი უმოძრაოა, რადგან დროის ყოველ მომენტში ის ისვენებს, და რადგან ის ისვენებს დროის ყოველ მომენტში, ის ყოველთვის ისვენებს.

ამ აპორიაში ლოგიკური პარადოქსი დაძლეულია ძალიან მარტივად - საკმარისია იმის გარკვევა, რომ დროის ყოველ მომენტში მფრინავი ისარი ისვენებს სივრცის სხვადასხვა წერტილში, რაც, ფაქტობრივად, მოძრაობაა. აქ უნდა აღინიშნოს კიდევ ერთი წერტილი. გზაზე მანქანის ერთი ფოტოსურათიდან შეუძლებელია მისი გადაადგილების ფაქტის და მასამდე მანძილის დადგენა. იმის დასადგენად, მოძრაობს თუ არა მანქანა, გჭირდებათ ორი ფოტო გადაღებული ერთი და იგივე წერტილიდან დროის სხვადასხვა წერტილში, მაგრამ თქვენ ვერ განსაზღვრავთ მათგან მანძილს. მანქანამდე მანძილის დასადგენად, დაგჭირდებათ ორი ფოტო გადაღებული სივრცის სხვადასხვა წერტილიდან დროის ერთ მომენტში, მაგრამ მათგან ვერ განსაზღვრავთ მოძრაობის ფაქტს (რა თქმა უნდა, გამოთვლებისთვის დამატებითი მონაცემები მაინც გჭირდებათ, ტრიგონომეტრია დაგეხმარებათ ). რაზეც მინდა გავამახვილო განსაკუთრებული ყურადღება, არის ის, რომ ორი წერტილი დროისა და ორი წერტილი სივრცეში არის სხვადასხვა რამ, რაც არ უნდა აგვერიოს, რადგან ისინი სხვადასხვა შესაძლებლობებს იძლევა კვლევისთვის.
მე გაჩვენებთ პროცესს მაგალითით. ჩვენ ვირჩევთ "წითელ სქელს მუწუკში" - ეს არის ჩვენი "მთელი". ამავდროულად, ჩვენ ვხედავთ, რომ ეს ნივთები მშვილდით არის და არის მშვილდის გარეშე. ამის შემდეგ, ჩვენ ვირჩევთ "მთლიანობის" ნაწილს და ვქმნით კომპლექტს "მშვილდით". ასე იღებენ შამანები საკვებს თავიანთი სიმრავლის თეორიის რეალობასთან მიბმის გზით.

ახლა მოდით გავაკეთოთ პატარა ხრიკი. ავიღოთ „მყარი მუწუკით მშვილდთან ერთად“ და გავაერთიანოთ ეს „მთვლები“ ​​ფერის მიხედვით, შევარჩიოთ წითელი ელემენტები. ბევრი "წითელი" მივიღეთ. ახლა საბოლოო კითხვა: მიღებული კომპლექტები "მშვილდით" და "წითელი" იგივე ნაკრებია თუ ორი განსხვავებული ნაკრები? პასუხი მხოლოდ შამანებმა იციან. უფრო სწორად, თვითონაც არაფერი იციან, მაგრამ როგორც ამბობენ, ასე იქნება.

ეს მარტივი მაგალითი გვიჩვენებს, რომ სიმრავლეების თეორია სრულიად უსარგებლოა, როცა საქმე რეალობას ეხება. რა არის საიდუმლო? ჩვენ ჩამოვაყალიბეთ კომპლექტი "წითელი მყარი ერთად pimple და მშვილდი." ფორმირება მოხდა ოთხი სხვადასხვა საზომი ერთეულის მიხედვით: ფერი (წითელი), სიმტკიცე (მყარი), უხეშობა (მუწუკა), დეკორაცია (მშვილდით). მხოლოდ საზომი ერთეულების ნაკრები გვაძლევს საშუალებას ადეკვატურად აღვწეროთ რეალური ობიექტები მათემატიკის ენაზე. ასე გამოიყურება.

ასო „ა“ სხვადასხვა ინდექსებით მიუთითებს სხვადასხვა საზომ ერთეულზე. ფრჩხილებში მონიშნულია საზომი ერთეულები, რომლებითაც „მთელი“ გამოირჩევა წინასწარ ეტაპზე. საზომი ერთეული, რომლითაც კომპლექტი იქმნება, ამოღებულია ფრჩხილებიდან. ბოლო ხაზი აჩვენებს საბოლოო შედეგს - ნაკრების ელემენტს. როგორც ხედავთ, თუ ჩვენ ვიყენებთ გაზომვის ერთეულებს ნაკრების შესაქმნელად, მაშინ შედეგი არ არის დამოკიდებული ჩვენი მოქმედებების თანმიმდევრობაზე. და ეს მათემატიკაა და არა შამანების ცეკვა ტამბურით. შამანებს შეუძლიათ „ინტუიტიურად“ მივიდნენ იმავე შედეგამდე, ამტკიცებენ, რომ ეს „აშკარაა“, რადგან საზომი ერთეულები არ არის მათი „მეცნიერული“ არსენალის ნაწილი.

საზომი ერთეულების გამოყენებით, ძალიან ადვილია ერთი ნაკრების გაყოფა ან რამდენიმე ნაკრების ერთ სუპერსეტში გაერთიანება. მოდით უფრო ახლოს მივხედოთ ამ პროცესის ალგებრას.

თუ უკვე იცნობთ ტრიგონომეტრიული წრე და თქვენ უბრალოდ გსურთ განაახლოთ თქვენი მეხსიერება გარკვეული ელემენტების შესახებ, ან სრულიად მოუთმენელი ხართ, მაშინ აქ არის:

აქ ჩვენ დეტალურად გავაანალიზებთ ყველაფერს ეტაპობრივად.

ტრიგონომეტრიული წრე არ არის ფუფუნება, არამედ აუცილებლობა

ტრიგონომეტრია ბევრი ადამიანი მას უკავშირებს შეუღწეველ სქელს. მოულოდნელად ტრიგონომეტრიული ფუნქციების ამდენი მნიშვნელობა, ამდენი ფორმულა გროვდება... მაგრამ თითქოს თავიდან არ გამოვიდა და... მივდივართ... სრული გაუგებრობა...

ძალიან მნიშვნელოვანია, რომ არ დანებდეთ ტრიგონომეტრიული ფუნქციების მნიშვნელობები, - ამბობენ, ფასეულობათა ცხრილით ყოველთვის შეგიძლიათ შეხედოთ სტიმულს.

თუ თქვენ მუდმივად უყურებთ ცხრილს ტრიგონომეტრიული ფორმულების მნიშვნელობებით, მოდით, თავი დავაღწიოთ ამ ჩვევას!

ის დაგვეხმარება! თქვენ რამდენჯერმე იმუშავებთ და შემდეგ ის თქვენს თავში გამოჩნდება. როგორ ჯობია მაგიდას? დიახ, ცხრილში ნახავთ მნიშვნელობების შეზღუდულ რაოდენობას, მაგრამ წრეზე - ყველაფერი!

მაგალითად, თქვით ყურებისას ტრიგონომეტრიული ფორმულების მნიშვნელობების სტანდარტული ცხრილი , რისი უდრის სინუსი, ვთქვათ, 300 გრადუსს, ანუ -45.


არანაირად?.. შეგიძლიათ, რა თქმა უნდა, დაკავშირება შემცირების ფორმულები...და ტრიგონომეტრიულ წრეს რომ შევხედოთ, ადვილად უპასუხებთ ასეთ კითხვებს. და მალე გაიგებთ როგორ!

ხოლო ტრიგონომეტრიული განტოლებებისა და უტოლობების ამოხსნისას ტრიგონომეტრიული წრის გარეშე, ეს აბსოლუტურად არსად არის.

ტრიგონომეტრიული წრის შესავალი

წავიდეთ თანმიმდევრობით.

პირველ რიგში, მოდით დავწეროთ რიცხვების ეს სერია:

და ახლა ეს:

და ბოლოს ეს:

რა თქმა უნდა, ცხადია, რომ ფაქტობრივად, პირველ ადგილზეა, მეორე ადგილზეა და ბოლო ადგილზეა. ანუ ჩვენ უფრო დავინტერესდებით ჯაჭვით.

მაგრამ რა ლამაზი აღმოჩნდა! თუ რამე მოხდება, ჩვენ აღვადგენთ ამ "სასწაული კიბეს".

და რატომ გვჭირდება?

ეს ჯაჭვი არის სინუსისა და კოსინუსის ძირითადი მნიშვნელობები პირველ კვარტალში.

მოდით დავხატოთ ერთეული რადიუსის წრე მართკუთხა კოორდინატულ სისტემაში (ანუ ავიღებთ სიგრძის ნებისმიერ რადიუსს და ვაცხადებთ მის სიგრძეს ერთეულად).

"0-Start" სხივიდან ჩვენ ვაგდებთ კუთხეებს ისრის მიმართულებით (იხ. სურათი).

ვიღებთ შესაბამის წერტილებს წრეზე. ასე რომ, თუ წერტილებს დავაპროექტებთ თითოეულ ღერძზე, მაშინ მივიღებთ ზუსტად მნიშვნელობებს ზემოთ მოყვანილი ჯაჭვიდან.

რატომ არის ეს, გეკითხებით?

ნუ გავაანალიზებთ ყველაფერს. განვიხილოთ პრინციპი, რაც საშუალებას მოგცემთ გაუმკლავდეთ სხვა, მსგავს სიტუაციებს.

სამკუთხედი AOB მართკუთხაა და შეიცავს . ჩვენ ვიცით, რომ b კუთხის საპირისპიროდ დევს ფეხი ჰიპოტენუზის ნახევრად (გვაქვს ჰიპოტენუზა = წრის რადიუსი, ანუ 1).

ეს ნიშნავს AB= (და შესაბამისად OM=). და პითაგორას თეორემის მიხედვით

იმედი მაქვს, რაღაც უკვე ნათელია?

ასე რომ, B წერტილი შეესაბამება მნიშვნელობას, ხოლო წერტილი M შეესაბამება მნიშვნელობას

იგივეა პირველი კვარტლის სხვა მნიშვნელობებთან ერთად.

როგორც გესმით, ნაცნობი ღერძი (ოხერი) იქნება კოსინუსური ღერძიდა ღერძი (oy) - სინუსების ღერძი . მოგვიანებით.

ნულის მარცხნივ კოსინუსური ღერძის გასწვრივ (ნულის ქვემოთ სინუს ღერძის გასწვრივ) იქნება, რა თქმა უნდა, უარყოფითი მნიშვნელობები.

ასე რომ, აი, ეს არის ყოვლისშემძლე, რომლის გარეშეც არსად არის ტრიგონომეტრია.

მაგრამ ჩვენ ვისაუბრებთ იმაზე, თუ როგორ გამოვიყენოთ ტრიგონომეტრიული წრე.

კოორდინატები xწრეზე განლაგებული წერტილები უდრის cos(θ) და კოორდინატებს შეესაბამება sin(θ), სადაც θ არის კუთხის სიდიდე.

  • თუ გაგიჭირდებათ ამ წესის დამახსოვრება, უბრალოდ გახსოვდეთ, რომ წყვილში (cos; sin) „სინუსი ბოლოს მოდის“.
  • ეს წესი შეიძლება გამოვიტანოთ მართკუთხა სამკუთხედების გათვალისწინებით და ამ ტრიგონომეტრიული ფუნქციების განსაზღვრით (კუთხის სინუსი ტოლია მოპირდაპირე მხარის სიგრძის თანაფარდობის, ხოლო მიმდებარე მხარის კოსინუსი ჰიპოტენუზასთან).

ჩაწერეთ წრეზე ოთხი წერტილის კოორდინატები."ერთეული წრე" არის წრე, რომლის რადიუსი ერთის ტოლია. გამოიყენეთ ეს კოორდინატების დასადგენად xდა კოორდინატთა ღერძების წრესთან გადაკვეთის ოთხ წერტილში. ზემოთ, სიცხადისთვის, ჩვენ აღვნიშნეთ ეს პუნქტები, როგორც "აღმოსავლეთი", "ჩრდილოეთი", "დასავლეთი" და "სამხრეთი", თუმცა მათ არ აქვთ დადგენილი სახელები.

  • „აღმოსავლეთი“ შეესაბამება წერტილს კოორდინატებით (1; 0) .
  • "ჩრდილოეთი" შეესაბამება წერტილს კოორდინატებით (0; 1) .
  • „დასავლეთი“ შეესაბამება წერტილს კოორდინატებით (-1; 0) .
  • "სამხრეთი" შეესაბამება წერტილს კოორდინატებით (0; -1) .
  • ეს ჩვეულებრივი გრაფიკის მსგავსია, ამიტომ არ არის საჭირო ამ მნიშვნელობების დამახსოვრება, უბრალოდ გახსოვდეთ ძირითადი პრინციპი.
  • დაიმახსოვრეთ პირველი კვადრატის წერტილების კოორდინატები.პირველი კვადრატი მდებარეობს წრის ზედა მარჯვენა ნაწილში, სადაც არის კოორდინატები xდა მიიღეთ დადებითი ღირებულებები. ეს არის ერთადერთი კოორდინატები, რომლებიც უნდა გახსოვდეთ:

    დახაზეთ სწორი ხაზები და დაადგინეთ მათი წრის გადაკვეთის წერტილების კოორდინატები.თუ ერთი კვადრატის წერტილებიდან დახაზავთ სწორ ჰორიზონტალურ და ვერტიკალურ ხაზებს, ამ ხაზების წრესთან გადაკვეთის მეორე წერტილებს ექნებათ კოორდინატები. xდა იგივე აბსოლუტური მნიშვნელობებით, მაგრამ განსხვავებული ნიშნებით. სხვა სიტყვებით რომ ვთქვათ, თქვენ შეგიძლიათ დახაზოთ ჰორიზონტალური და ვერტიკალური ხაზები პირველი კვადრატის წერტილებიდან და მიანიშნოთ წრეზე გადაკვეთის წერტილები იმავე კოორდინატებით, მაგრამ ამავე დროს დატოვოთ ადგილი მარცხნივ სწორი ნიშნისთვის ("+" ან "-").

  • კოორდინატების ნიშნის დასადგენად გამოიყენეთ სიმეტრიის წესები.არსებობს რამდენიმე გზა იმის დასადგენად, თუ სად უნდა განთავსდეს "-" ნიშანი:

    • დაიმახსოვრე ჩვეულებრივი სქემების ძირითადი წესები. ღერძი xუარყოფითი მარცხნივ და დადებითი მარჯვნივ. ღერძი უარყოფითი ქვემოთ და დადებითი ზემოთ;
    • დაიწყეთ პირველი კვადრატით და გაავლეთ ხაზები სხვა წერტილებზე. თუ ხაზი კვეთს ღერძს , კოორდინაცია xშეიცვლის თავის ნიშანს. თუ ხაზი კვეთს ღერძს x, შეიცვლება კოორდინატის ნიშანი ;
    • გახსოვდეთ, რომ პირველ კვადრატში ყველა ფუნქცია დადებითია, მეორე კვადრატში მხოლოდ სინუსი დადებითია, მესამე კვადრატში მხოლოდ ტანგენსი დადებითია, ხოლო მეოთხე კვადრატში მხოლოდ კოსინუსი დადებითია;
    • რომელი მეთოდიც არ უნდა გამოიყენოთ, უნდა მიიღოთ (+,+) პირველ კვადრატში, (-,+) მეორეში, (-,-) მესამეში და (+,-) მეოთხეში.
  • შეამოწმეთ თუ დაუშვით შეცდომა.ქვემოთ მოცემულია „სპეციალური“ წერტილების კოორდინატების სრული სია (გარდა კოორდინატთა ღერძების ოთხი წერტილისა), თუ თქვენ მოძრაობთ ერთეული წრის გასწვრივ საათის ისრის საწინააღმდეგოდ. გახსოვდეთ, რომ ყველა ამ მნიშვნელობის დასადგენად საკმარისია დაიმახსოვროთ წერტილების კოორდინატები მხოლოდ პირველ კვადრატში:

    • პირველი კვადრატი :( 3 2 , 1 2 (\displaystyle (\frac (\sqrt (3))(2)),(\frac (1)(2)))); (2 2 , 2 2 (\displaystyle (\frac (\sqrt (2))(2)),(\frac (\sqrt (2))(2)))); (1 2 , 3 2 (\displaystyle (\frac (1)(2)),(\frac (\sqrt (3))(2))));
    • მეორე კვადრატი :( − 1 2 , 3 2 (\displaystyle -(\frac (1)(2)),(\frac (\sqrt (3))(2)))); (− 2 2 , 2 2 (\displaystyle -(\frac (\sqrt (2))(2)),(\frac (\sqrt (2))(2)))); (− 3 2 , 1 2 (\displaystyle -(\frac (\sqrt (3))(2)),(\frac (1)(2))));
    • მესამე კვადრატი :( − 3 2 , − 1 2 (\displaystyle -(\frac (\sqrt (3))(2)),-(\frac (1)(2)))); (− 2 2 , − 2 2 (\displaystyle -(\frac (\sqrt (2))(2)),-(\frac (\sqrt (2))(2)))); (− 1 2 , − 3 2 (\displaystyle -(\frac (1)(2)),-(\frac (\sqrt (3))(2))));
    • მეოთხე კვადრატი :( 1 2 , − 3 2 (\displaystyle (\frac (1)(2)),-(\frac (\sqrt (3))(2)))); (2 2 , − 2 2 (\displaystyle (\frac (\sqrt (2))(2)),-(\frac (\sqrt (2))(2)))); (3 2 , − 1 2 (\displaystyle (\frac (\sqrt (3))(2)),-(\frac (1)(2)))).